STABILITY OF GEODESIC WAVE MAPS IN DIMENSIONS d ≥ 3

نویسنده

  • VIKTOR GRIGORYAN
چکیده

We show that a wave map with initial data close to that of a geodesic wave map in the sense of H, with s > n 2 in spatial dimensions n ≥ 3 can be continued globally in time, and stays close to the geodesic wave map in the critical Besov norm, and in the range of Sobolev spaces Ḣ ′ , with n 2 ≤ s′ ≤ s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Geodesic Wave Maps

STABILITY OF GEODESIC WAVE MAPS SEPTEMBER 2008 VIKTOR GRIGORYAN, B.S., YEREVAN STATE UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Andrea Nahmod In this thesis we investigate the stability properties of a special class of solutions to the wave maps system. Wave maps are maps from a Minkowski manifold into a Riemannian mani...

متن کامل

Stability of Spherically Symmetric Wave Maps

We study Wave Maps from R2+1 to the hyperbolic plane H2 with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some H1+μ, μ > 0. We show that such Wave Maps don’t develop singularities in finite time and stay close to the Wave Map extending the spherically symmetric data(whose existence is ensured by a theorem of Christodoulou-T...

متن کامل

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

Introducing Stable Real Non-Topological Solitary Wave Solutions in 1+1 Dimensions

By adding a proper term to the Lagrangian density of a real non-linear KG system with a proposed non-topological unstable solitary wave solution, its stability guaranteed appreciably. This additional term in the new modified Lagrangian density behaves like a strong internal force which stands against any arbitrary small deformation in the proposed non-topological solitary wave solution.

متن کامل

Threshold for blowup for equivariant wave maps in higher dimensions

We consider equivariant wave maps from R + d 1 to Sd in supercritical dimensions ⩽ ⩽ d 3 6. Using mixed numerical and analytic methods, we show that the threshold of blowup is given by the codimension-one stable manifold of a self-similar solution with one instability. To probe self-similar blowup, we develop a novel numerical method, based on an adaptive rescaling of coordinates, which may be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010